
Authoring Context-dependent Cross-device User
Interfaces based on Trigger/Action Rules

Giuseppe Ghiani, Marco Manca, Fabio Paternò
CNR-ISTI, HIIS Laboratory

Pisa, Italy
{giuseppe.ghiani, marco.manca, fabio.paterno}@isti.cnr.it

ABSTRACT
Current authoring environments provide the possibility of
developing user interfaces with limited adaptation
capacities. The most widely adopted tools follow the
responsive design approach and allow developers to obtain
user interfaces that can adapt mainly to the screen size and
orientation. We present a solution able to support
development of user interfaces able to adapt to the various
types of contextual events (that can be related to users,
devices, environments, and social relationships), with the
added possibility of distributing the user interface elements
across multiple devices. The context-dependent behavior is
modelled through trigger / action rules, and can even be
applied to Web applications that were not originally
designed to be context-aware. This paper describes the
design and main features of the novel authoring
environment and reports on a first user study.

CCS Concepts
• Human-centered computing~Ubiquitous and mobile
computing systems and tools; • Software and its
engineering~Context specific languages; • Software and
its engineering~Development frameworks and
environments;

Author Keywords
Ubiquitous Computing; Context-Awareness; Cross-device
User interfaces

INTRODUCTION
Ubiquitous computing is becoming reality, however
developing applications that can actually exploit the rich
technological offer in terms of devices and sensors and
improve user experience is still difficult. Herein we focus on
Web applications that can be accessed from any browser-
enabled device, and currently the main approach for
addressing the variety of possible devices is responsive
design [11], which mainly consists of showing, hiding or
changing user interface elements depending on the screen

size of the available device or windows detected through
media queries. However, this seems too limited since there
can be various contextual changes that may require adapting
the interactive application and, in some cases, it can be
useful to distribute its user interface across different devices
to facilitate transferring and sharing of information.

We consider the context of use structured along four main
dimensions: the user (the tasks, the preferences, the
emotional state, etc.), the devices (their interaction
resources, connectivity, multimedia support, etc.), the
environment (noise, light, temperature, etc.), and social
relationships (friendships, groups, etc.). One of the main
first attempts to provide support for the development of
context-enabled applications was the context toolkit [17],
which provided a library aiming to hide the complexity of
the actual sensors. However, it considered a limited set of
events and required a programming style that could be
difficult to apply because it required developing code that is
deeply intertwined with the application. We propose a more
modular approach, with a clear separation of concerns, in
which the role of application, context management and
context-dependent adaptation are clearly distinguished, and
their integration is precisely defined. Indeed, our approach
is based on an authoring environment that allows developers
and designers to interactively add adaptation rules modelled
in terms of triggers and consequent actions, which can even
be defined incrementally by people other than the original
application developers in order to create different versions
for context-dependent customizations. For example, it is
possible to define versions that provide different
customizations depending on the users’ roles. In addition,
with such context-dependent behavior it is also possible to
make the user interface cross-device (with synchronized
elements distributed across multiple devices) in such a way
to exploit devices that are encountered while freely moving
about, the typical example being when users find a public
display and want to exploit it to share information from their
personal device with others.

We envision various application domains that can benefit
from such possibilities: for example, smart retail in which
large shops can customize real-time support for the
shoppers, city or museum guides in order to facilitate group
visits with context-dependent information and games,
learning applications with the possibility to adapt the
contents and the way of presenting them depending on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MUM '15, November 30-December 02, 2015, Linz, Austria
© 2015 ACM. ISBN 978-1-4503-3605-5/15/11…$15.00
DOI: http://dx.doi.org/10.1145/2836041.2836073

The 14th International Conference on Mobile and Ubiquitous Multimedia (MUM 2015)

313

http://dx.doi.org/10.1145/2836041.2836073

dynamic information on available devices and nearby
people, and personal state.

In the paper, after discussion of related work we introduce
example scenarios that can be addressed with our solution,
followed by the main features of the authoring environment,
we then illustrate the underlying software architecture and
indicate how it is integrated with a context manager
infrastructure and how the adaptation rules are applied to the
corresponding applications. We also report on a first user
test and discuss the positive aspects along with some
suggestions for further improvements. Lastly, we draw some
conclusions and provide indications about future work.

RELATED WORK
Our work draws from research on context-aware adaptation,
multi-device design tools, and cross-device user interfaces.

Context-aware Adaptation
Providing context awareness to computer applications has
been a challenge for decades. Stick-e notes [1] was one of
the first attempts to make applications able to adapt to the
context of use by specifying conditions. With the
technology evolution, customizing user interaction in
smartphones has quickly raised interest. For example, an
early proposal [10] provided the possibility of defining
context-action rules through which users can connect
interaction inputs (contexts) to application actions in
Symbian devices (e.g. when the user performs a circle
gesture then the smartphone becomes silent). Various
studies have shown that even the interaction modalities can
change according to the context of use in order to better
support users. Some of them are reported in [4], where they
are classified depending on aspects related to environment
(e.g. brightness, noise), social conditions (e.g. stress, social
interaction, and location). The possibility of going beyond
responsive design in order to consider various possible
contextual events and then adapt the level of multimodality
accordingly has been proposed in [6], in which rules
expressed in terms of event / condition / actions were
exploited for this purpose. A similar format has been
exploited in Keep Doing it [13], a mobile application that
continuously records users’ interactions in such a way to
allow users to automate a task based on their latest actions
in a kind of programming by example approach. The
contextual events that can be managed by this approach are
those that can be detected through the sensors and
peripherals of modern smartphones. In general, this type of
approach has limited applicability, so it can be useful to
automate short sequences of actions but cannot support
more generally the development of context-aware
applications. This type of issue has been addressed in [16]
through an event-driven workflow framework to develop
context-aware mobile applications. The types of events that
it can detect are limited to locations, QR-codes, and time
and they are used to trigger activities described in the
workflow. Thus, overall it still does not support the
authoring of various types of context-dependent

applications. On the other hand, we can notice that there is a
general trend to consider trigger / action programming to
facilitate the development of applications reactive to
contextual events. Indeed, there is the IFTTT environment1
that facilitates the creation of recipes that indicate actions to
perform when some change occurs in frequently used social
network applications. IFTTT only supports recipes
composed of one event and one action. A recent study [18]
has also found that users found an extension of such
language easy to use to model small contextual home
applications even by people with limited programming
experience.

Multi-device Design Tools
One of the first tools addressing authoring of multi-device
user interfaces was Damask [9]. It used the concept of layers
to indicate parts of the user interface that can be associated
to either one specific device type or to all device types, and
exploited a set of patterns with the possibility of sketching
the desired user interface in order to facilitate its
development. Another tool in this area was Jelly [14] that
did not use layers but still enabled designers to copy
components across devices, and when an element was
copied designers could select from a list of available
widgets how it should look on the other device. Another
difference was that Jelly focused on creating running user
interfaces on top of existing toolkits instead of sketching
low fidelity prototypes.

In the meantime, with the advent of responsive design
various tools for creating applications according to this
approach have been put forward. An example is Webflow2
that facilitates the specification of different stylesheets
depending on the media queries and provides a number of
responsive website templates. In general, these approaches
have mainly considered multi-device applications in which
the user actually exploits only one device at a given time to
access the application. An attempt to address even the
authoring of distributed user interfaces in which at a given
time the user interface is distributed across multiple devices
is XDStudio [15]. It supports two complementary authoring
modes: simulated and on-device. In the former mode,
authoring is carried out on a single device in which the user
interfaces distributed on other devices are simulated. In the
latter mode, design and development actually takes place on
the target devices themselves. However, this type of
authoring environment does not provide support for
specifying context-dependent behavior, which is an
important feature supported by our environment.

Cross-device User Interfaces
In recent years some frameworks that provide useful support
for developing cross-device user interfaces have been
proposed. The proximity toolkit [12] simplifies the

1 https://ifttt.com/
2 https://webflow.com/

MUM 2015 Designing Interactions

314

https://ifttt.com/
https://webflow.com/

exploration of interaction techniques by supplying fine-
grained proxemics information between people, portable
devices, large interactive surfaces, and other non-digital
objects in a room-sized environment. It facilitates rapid
prototyping of proxemic-aware systems by supplying
developers with the orientation, distance, motion, identity,
and location information between entities, including a visual
monitoring tool that allows developers to visually observe,
record and explore proxemic relationships in 3D space. Its
architecture separates sensing hardware from the proxemic
data model derived from these sensors, which means that a
variety of sensing technologies can be substituted or
combined to derive proxemic information. We adopt a
similar separation in order to gather contextual information
from a variety of sensors.

Specific aspects related to how to minimize seams in
interaction with multiple devices by dynamic alignment
between interfaces have been addressed in [7].

A framework supporting user interface distribution in multi-
device and multi-user environments with dynamically
migrating engines has been proposed [5]. It does not require
a fixed server to manage the distribution. The elements of
the UI can be distributed by specifying specific device(s),
group(s) of devices, specific user(s), and groups of users
according to roles. Panelrama [19] is a solution able to
categorize device characteristics and dynamically change UI
allocation to best-fit devices. For this purpose, this
framework lets developers to specify the suitability of
panels to different types of devices. This allows its
optimization algorithm to distribute panels to devices that
maximize their match for the developer’s intent; as devices
are added or disconnected, panels are automatically
reallocated according to its optimization scheme.

The increasing availability of wearable devices in the
context of cross-device user interfaces has been addressed
by Weave [3], a framework for developers to create cross-
device wearable interaction by scripting. It provides a set of
JavaScript- based APIs to easily distribute UI output and
combine sensing events and user input across mobile and
wearable devices. It also has an integrated authoring
environment to program and test cross-device behaviors
and, when ready, deploy such behaviors. Similar
frameworks aiming to provide structured support when
developing applications involving smartwatches have been
proposed in [2] and [8].

Our authoring environment draws inspiration from all these
works, but extends existing concepts for context-dependent
cross-device user interfaces through contextual trigger /
action rules that can be edited by direct manipulation even
on existing Web applications, and can also be exploited to
obtain dynamic user interface distribution across multiple
devices. Thus, it covers various aspects in an integrated
approach that facilitates development and customizations of
the target applications, and can be deployed in various
settings.

SCENARIOS
In this section we describe two possible scenarios supported
by our solution. In both scenarios, run-time context-
awareness is addressed by a rule-based approach at
authoring time. However, they are different since in the first
scenario a single mobile device with context-dependent
behavior is involved at run-time, while the second is
characterized by cross-device interactions triggered by
contextual events or on user request.

Walking Shopping List
A large supermarket provides its customers with a mobile
shopping list application. Users can install the app in their
smartphone and define the shopping list by selecting items
available in the store before leaving home. When walking
through the store in search of such items, the app provides
various information on the items, such as position (e.g., the
shelf number), price, ingredients, alternative and
complementary products.

The marketing manager of the store is in charge of
improving user experience and increasing sales. To this aim,
s/he relies on a developer using the authoring tool for
adaptation rules that allow them to define how the shopping
list application will adapt according to contextual factors.
One rule takes into account the customers’ physical activity
(detected by the device accelerometers) and shows
additional information about the desired items (e.g.
allergens, suggested recipes) or alternatives to them when
the user walks slowly (indicating that they have time and
interest to get additional information). When the walking
speed increases, indicating that the user is in a hurry, the
rule hides any additional content and emphasizes the most
relevant information: the exact location of the currently
selected item is displayed and the item picture is enlarged in
order to facilitate the search in the shelf.

The application can also take into account additional
contextual aspects, such as the proximity of an area
(detected by monitoring the Bluetooth beacons nearby), in
order to display advertisements “tailored” to the user profile.
For example, personalized graphical/vocal advertisements
about an aftershave, a shampoo or a perfume (depending on
customer’s gender, age) on discount are triggered when the
customer walks slowly along the cosmetics aisle.

Tourist City Guide
A tourist guide regularly brings groups of people across an
historical town and relies on an interactive application that
acts as a multimedia support. The application contains
information about aspects of interest related to the town
(events, dates, famous people, pictures and videos, etc.).
When organizing a tour, it is possible to create a set of
custom adaptation rules taking into account the type of
audience (adults, children, students) and their interests in
order to define how to adapt the application to better exploit
public displays deployed in the main points of interest such
as the town hall, the archeological museum and the modern
art gallery, and to show customized content to the tourist

Designing Interactions MUM 2015

315

version of the mobile guide. For each point of interest with a
public display, the designer creates a rule that will trigger
the distribution of parts of the application from the mobile
device to the public display, in order to provide the audience
with additional multimedia resources. The rule trigger is the
vicinity of the public display. For instance, resources about
the history of the municipality will be shown in the public
display of the city hall as soon as the user mobile device
detects the Bluetooth of the public display. Different sets of
rules, with the same trigger but differing in the actions, can
be defined for different classes of visitors. For instance,
while texts and images could be distributed in case of adult
audience, entertaining videos will be distributed instead if
the audience is made up of schoolchildren. In addition, the
guide version of the application can push some specific
content to the tourists, if they so wish.

AUTHORING TOOL
The authoring tool was specifically designed for supporting
the development of context-dependent cross-device user
interfaces by defining rules for the application adaptation
and distribution. The authoring environment is based on
three main features: first, there is a clear distinction between
the part dedicated to the user interface composition and that
for the specification of the contextual rules. Second, the
rules are structured in terms of triggers and associated
actions, with the possible events and conditions defining the
triggers classified according to four dimensions (user,
device, environment, social), and the actions indicating how
the user interface should change for the platform considered
(so far we consider smartwatch, smartphone, tablet, PC,
wide screen). Third, dynamic distribution of user interface
across various devices can be indicated. Such distribution
can be triggered by contextual events (e.g. when the user is
close to a public display then some parts of the user
interface are shown on it as well) or on explicit user request
(UI events).

Tool Walkthrough
Figure 1 shows the overall authoring environment in two
typical use cases. The main central area is where the user
interface is composed for the currently selected platform. It
shows the platform screen with inside the application user
interface, which is adapted accordingly because the
application version loaded is the one related to the chosen
platform. Currently, five platforms (desktop, smartphone,
tablet, smartwatch, and public display) are supported and
those relevant can be selected in the graphical vertical menu
on the left. In the application under development some
scripts are included in order to facilitate the selection of the
user interface parts to be adapted by direct manipulation.

On the right side there is the part of the authoring tool
dedicated to the editing of the trigger / actions rules. The
trigger / action rules approach is consistent to the event-
condition-action (ECA) paradigm. There are two main types
of events: the standard events that can be generated by a
Web user interface (click, focus, mouse enter, change, etc.)

and the contextual events, which are those mainly
considered in this paper. As we mentioned, the aspects
related to such contextual events are grouped along four
dimensions: users (knowledge, task, disability, position,
personal data, physical activity, proximity, etc.),
environment (light, noise, temperature, structure, etc.),
technology (devices, screen sizes, battery, connectivity,
relative position, etc.), social (group memberships, level of
friendships). Thus, developers can freely choose some
contextual event and then indicate the possible effects. The
top part of Figure 2 shows more in detail the selectable users
dimension aspects. The elements with folder-shaped icon
are entities (e.g. “disability”) and contain attributes (e.g.
“blindness”) which have a sheet-shaped icon.

For specifying the actions the users can interactively select a
part or an element of the user interface and indicate on
which device types it should be visible or not or how some
user interface attributes (such as colours, fonts, etc.) should
change. Alternatively, a possible action can be the loading
of a new page or the change of the content shown in the user
interface part selected.

The rules edited can be saved and associated with the
application, so that the developer can at any time preview
the effect of their performance. For this purpose on the top
part of the environment there is a list of rule triggers
currently defined for the application under development,
and by selecting one of them it is possible to simulate the
contextual event and get a preview of the effect on the user
interface. If the action of a rule specifies a distribution, then
the main area is divided by the number of device types
involved in order to show how the user interface is
distributed across them. By selecting the triggers in the top
part it is possible to see the effects in any of them. In this
case, on the bottom side the authoring tool also shows the
distribution profile, which consists in the indication of the
device types involved.

The upper side of Figure 1 shows an example of adaptation
rule definition for a smart shopping application. The user
has selected the upper container (identified as
“shoppingListContent” under the Actions part) and has set
“font-size:25px” in the Update UI field. At run time the rule
will increase the font size of the texts in the
shoppingListContent element.

An example UI distribution definition for a tourist guide
application is shown in the bottom side of Figure 1. The
main part of the authoring tool displays the preview of a
previously defined distribution rule, triggered by selecting
the button in the top-left part of the interface
(“Point_of_interest = Piazza della Signoria”). The
distribution takes place when the vicinity to the point of
interest is detected, and consists in some content (a textual
description of the square) being distributed from the tablet
device of the tourist guide to the smartphones of the group
of tourists.

MUM 2015 Designing Interactions

316

Figure 1. The authoring environment for context-dependent user interfaces: adaptation rule (top) and distribution rule (bottom)
editing.

Implementation
The authoring environment is Web-based. On the main
screen, the user can load an existing Web site via local or
remote URL, which will be used as the source interface to
define the context-dependent adaptations and distributions.
We also defined a Chrome Extension (similar extensions
can be implemented also for other browsers), which allows
the tool to load an application user interface inside an
Iframe in the Authoring Environment. The browser
extension changes the User Agent of the Iframe depending
on the currently selected platform. It is thus possible to
present the different (and adapted) versions of the user
interface according to the virtual device in use. Selection of
the user interface elements to be adapted by a rule is
managed by a script injected in the Iframe by the browser
extension. This strategy avoids possible problems due to
violations of the same origin policy, i.e. it allows the
environment to interact with the Iframe content/functions
also when it has a different domain from the authoring tool

(e.g. when the application loaded in the Iframe is hosted in a
different server).

When an element is hovered by the mouse pointer, the
injected script sets its background to red and, if the element
is selected, sets its border to red (see for example Figure 1,
top-left, in which an item of the shopping list has been
selected). The identifier of the selected element is shown in
the “What” field of the “Actions” part (see Figure 2). The
element selected is the one that will be affected by the
updates specified in the “Actions” part.

The developer defines the adaptation/distribution trigger by
firstly selecting an attribute from the contextual aspects tree.
Such a structure is dynamically generated by the authoring
tool according to the context schema retrieved in real time
from the context model manager. The context schema is an
XML Schema Definition (XSD) file describing the
contextual resources in terms of the data type of the
attributes contained in the various entities involved and in
terms of the connections between the entities. The tree is

Designing Interactions MUM 2015

317

dynamically generated every time the authoring tool is
opened. This allows, in case of modifications of the context
schema, to have the tree in the authoring tool consistent
with the context model manager automatically.
Modifications in the context schema can be due to upgrades
devoted to manage novel sensors embedded in newer
smartphones (e.g., temperature, altitude, etc.) and/or
additional user profile attributes, for example relevant for
marketing aims.

Figure 2. Detail of the part for editing triggers and actions.

RUN-TIME ARCHITECTURE
In order to correctly execute the applications according to
the adaptation rules specified it is necessary to have a
specific support at run-time. The main goals of such support
are to manage and apply the adaptation or distribution rules,
and detect the events that trigger their performance. Such
run-time support exploits the functionalities of three
components:

 The context model manager is composed of a context
server and a set of external modules delegated to monitor
relevant parameters of the context of use (e.g.
environmental noise, device coordinates, user physical
activity). The purpose of the context model manager is to
detect contextual events and inform those modules that
subscribed to them. The context model manager shares
the context schema with the authoring tool. This enables
the authoring tool to display (see the upper part of Figure
2) exactly the contextual aspects that can be tackled at run
time, so that the developer can define effective triggers;

 The distribution manager, which manages user interfaces
distributed across multiple devices in order to allow
dynamic migration of components and keep their state
synchronized;

 The adaptation engine, which stores and manages the
adaptation rules.

Figure 3. The architecture of the run-time support.

Figure 3 shows how such components interact with each
other. The adaptation engine subscribes to the context
model manager in order to be informed of the occurrence of
the events relevant for the rules associated with the active
applications. When one or more of such events occur, the
adaptation engine sends the actions to the Web applications
in order to perform the corresponding adaptation. Such
updates commands are JSON encoded and are interpreted
by the scripts included in the Web application by the
authoring environment. They can modify properties of user
interface elements or content, activate functions or
navigation, etc. Some of such actions can even change the
distribution of some user interface parts across devices, in
this case the script in the Web application sends a
corresponding command to the distribution manager, which
notifies the involved devices. Such distribution manager
contains the current distribution profile, which indicates
how the various parts of the user interface are currently
distributed across the devices that have subscribed to the
environment. A distribution command mainly indicates that
a user interface element or the elements included in a
container should be visible or not on one specific device or
a group of devices that have the same role or on all devices
of a given platform.

MUM 2015 Designing Interactions

318

DOMAIN-DEPENDENT EXTENSION
In order to facilitate the adoption of our authoring
environment even by people who are not particularly expert
in programming, we have also created an additional layer
that provides support for creating rules that are particularly
relevant in specific domains.

The basic idea is that the structure of a set of rules that can
be frequently used in the considered domain is already
defined and the application designer has just to specify the
values for the specific case under consideration.

We have created an example of this domain-dependent
extension for the smart retail area. The idea is to facilitate
the creation of applications that can be exploited by
shoppers while freely moving directly by the manager or the
marketing expert of a large shop.

Figure 4. The domain-dependent support for the smart retail.

Figure 4 shows on the right a set of predefined rule
structures that can be selected: “when the user is near …”,
“when the user is moving …”, “when the user is entering-
exiting …”, “when the weather is …”. Once the designer
selects one of them then the specific parameters to define
are graphically represented in the main central area. For
example, if the rule selected was “when the user is near …”
then the choice between a point of interest or a product or a
store aisle is proposed, and after selection of one of them the
available options in the current applications are indicated for
completing the definition of the trigger. Then, the possible
meaningful actions for the considered rule are shown. In the
example they can be showing a video or a promotion or a
message, and again the user can then complete the rule
composition by selecting the relevant values.

USER TEST
The user test aimed to assess usability, usefulness and
completeness of the environment. It did not consider the
domain-dependent part, and thus it involved people with
medium-high Web programming abilities.

Set up
Before interacting with the authoring tool, the participants
could read an introduction about it, describing both the aims
and the way the tool works. Then they watched a three

minute video showing some examples of how the authoring
tool can be used. After that, they were allowed to freely
interact with the authoring tool for creating some rules
(without any constraint on the triggers nor on the actions).
Finally, they were asked to carry out the tasks related to two
scenarios, one implying UI adaptation and one implying UI
distribution.

The adaptation scenario was about an interactive shopping
list application that had to be made adaptive according to
the customer’s physical behaviour. The users created two
adaptation rules taking into account the customer’s walking
speed. The first rule, triggered when the customer walks
fast, hides the additional products information and increases
the font size of the main product information. The second
rule is triggered when the customer walking speed is low. It
restores the original layout and content, i.e. shows the
additional information section and decreases the font size of
the main information part.

The distribution scenario regarded the e-learning domain
and was carried out on an online course hosted by Moodle3
(which is the most popular Learning Management System).
The main content of the course had to be made distributable
based on two distribution rules taking into account the
teacher position. In the first rule, one relevant part
disappears from the teacher’s smartphone and appears on
the large screen of the classroom when the large screen is in
proximity. The second rule restores the initial configuration,
i.e. hides the distributed part on the large screen and makes
it visible again on the smartphone when the system detects
that the teacher has entered the teachers room.

The total test duration (reading instructions, watching video,
familiarizing with the authoring tool and performing the
requested tasks) was recorded for each participant, as well
as the time taken for carrying out each one of the two
scenarios.

After the interaction, the participants were requested to fill
in an online questionnaire providing personal data including
education and technical background, and a feedback on the
tool. Quantitative ratings were given to assess the tool
usability, usefulness and completeness, while some open-
questions allowed to provide more general considerations
and recommendations.

Participants
Twelve individuals were involved in the test, 5 female and 7
male with age between 26 and 45 (mean: 32.3, std. dev.:
5.12). One of them held a PhD, 4 a Master Degree, 6 a
Bachelor and one a High School diploma. They were
recruited in our Institute but were not involved in the design
and development of the authoring tool, and the test was for
them the first chance to try it. They rated their skills in Web
programming on a 1 to 5 scale (5: excellent; 4: good; 3:
average; 2: low; 1: none), between 2 and 5 (mean: 3.5, std.

3 https://moodle.org/

Designing Interactions MUM 2015

319

dev.: 1.0). Half of the participants performed first scenario
A and then scenario B, while for the others the order was
inverted. This was done in order to reduce possible biases
due to the learning effect when analysing users performance
on the two scenarios (i.e. adaptation vs. distribution).

Three users had previously used an authoring tool and,
among them, only one had used an environment for
allowing UI distribution over multiple devices based on the
context of use (Atooma for Android).

Results
We logged the total test duration for each user as well as the
time taken for performing the two scenarios. All values are
expressed in minutes. The total duration (including reading
the instructions, watching to the video tutorials,
familiarizing with the authoring tool and performing the two
scenarios) varied between 26 and 49 minutes (mean: 37, std.
dev.:7). The time to complete scenario A was between 4 and
15 (mean: 9, std. dev.: 3), while for scenario B it varied
between 2 and 5 (mean: 4, std. dev.: 1). On average, the
time spent to perform the distribution scenario was less than
half of the time taken by the adaptation one. We did not run
tests for proving statistical difference in the times, which
would have been questionable due to the small sample size.
However, we can motivate such a difference by observing
that users had to explicitly write down the actions in the
adaptation scenario (and this implied to focus on the proper
CSS syntax). In the distribution scenario, they had simply to
select some elements and then press some buttons to define
elements (in)visibility in the various devices.

We asked users to rate, on a 1 to 7 Likert scale (with 7 as
best score), the following aspects characterizing the
proposed approach and the associated tool:

 Usability of the mechanism for selecting the rule trigger;
min: 3, max: 7, mean: 5.3, med.: 6, std. dev.: 1.2;

 Usability of the system for defining rule actions; min: 2,
max: 6, mean: 4.8, med.: 5, std. dev.: 1.2;

 Usability of the rule-based approach, in general; min: 4,
max: 7, mean: 5.8, med.: 6, std. dev.: 1.0;

 Completeness of the set of events and actions that can be
chosen; min: 3, max: 7, mean: 5.6, med.: 6, std. dev.: 1.0;

 Usefulness of the proposed approach for enhancing
applications with context-awareness; min: 4, max: 7,
mean: 5.8, med.: 6, std. dev.: 1.1;

 Usefulness of the proposed approach for making
applications cross-device; min: 4, max: 7, mean, 5.3,
med.: 5, std. dev.: 0.9.

Thus, overall the ratings were positive. The most
appreciated aspect was the usefulness for obtaining context-
aware applications, the lowest ratings were given to the
usability in specifying the actions associated with the rules.

The participants could also provide observations and
recommendations by answering to the following open
questions.

What would you suggest to improve the usability of the
proposed approach?

Three users noticed the lack of a clear feedback during rule
creation, and recommended to show the updated list of
actions attached to the rules as soon as they are specified.
Another issue was due to the lack of a support for editing
previously defined rules.

One user would simplify the entire interface because she
considered it to be too cumbersome, for instance by
allowing the selection and binding of multiple elements to
one action. Another user would make the contextual entity
names displayed on the tree structure more intuitive.

Would you add or remove any element from the set of events
and actions?

One user declared she would add contextual information
about the gyroscope to the context model.

Regarding the event definition, one user would like the list
of operators for defining event constraints to be filtered
according to the semantic of the aspect involved in the
condition. For instance, the operators “lower than” or
“greater than” may not be used for a condition on the
identifier of a Point of Interest, and the operator “equal to”
should be used instead.

Please cite example applications for which this approach
can be particularly useful.

The participants mentioned applications that optimize online
published content (e.g. books, newspapers) for the device in
use, city/museum guides, supports for meeting
presentations, systems for e-learning and professional
training, domotics, healthcare (e.g. services for the elderly),
online shopping and smart retail were among the various
examples provided.

We asked the participants to mention three positive and
three negative aspects of the authoring tool, including
recommendations for general improvements.

Among the positive aspects, seven users mentioned the ease
of use, five the adaptation/distribution preview capabilities,
three the ease of device-oriented selection for specifying UI
elements (in)visibility, and three the flexibility of the rule-
based approach and the large field of application.

Most of the negative aspects were due to small lacks in the
user interface layout or in the set of functionalities of the
Authoring Tool. For instance, few users did not find
intuitive the operators of the conditions because
abbreviations were used, e.g. gt, lt, eq, etc. The absence of
tips for specifying the UI updates based on CSS property
changes was an issue for some users that would like to see a
list of possible properties. Some users complaint about the

MUM 2015 Designing Interactions

320

lack of continuous feedback during the rule creation phase
(e.g. chosen trigger, defined actions). One user mentioned
the impossibility of seeing the value of the property in the
current interface while specifying the action to modify it (to
this aim he relied on the browser debugger). The need for
defining the same action for several elements instead of
applying the same action once to a multiple selection of
elements was also seen as problematic.

Besides the indications for improvements in the UI layout of
the authoring tool, we collected an observation from one
user regarding the UI state during multiple adaptations, i.e.
sequential trigger of several rules. The user proposal was to
have an automatic restoration of the original UI state just
before triggering a rule. The aim would be to apply the
actions of the rule to the original version of the UI, rather
than on the current state (that may result from actions of
previously triggered rules).

The following were among the most positive and
encouraging comments: “It looks like a very good approach
for managing context-awareness as it is intuitive and easy to
use.”, “The tool seems to be effective and quite easy to
use.”, “It is easy to use and lets you see the effects of your
choices immediately in order to modify them if something
wrong was done.”, “It is intuitive and has high potentials for
speeding up programming.”, “It is easy to learn the
mechanisms and the UI is intuitive.”

We have saved the adaptation and distribution rules created
during the test in order to subsequently analyse them.
Regarding the trigger, the users could freely choose a
contextual attribute and set a condition on it for triggering
the rule.

We looked at the users’ choices in order to quantify how
many of them had actually created semantically valid
conditions for the trigger.

In the adaptation scenario, seven users relied on the “steps
per minute” attribute for expressing the walking speed,
indicating a numerical threshold (e.g. greater or lower than
100). Four users chose the “activity type” attribute and
picked “walking (slow)” or “walking (fast)” predefined
values. One user used both attributes. All the users were
thus able to create meaningful triggers in the adaptation
scenario.

In the distribution scenario, the users were supposed to
consider proximity of a large screen device in the first rule,
and proximity of a point of interest in the second. Six users
chose the right attributes for both rules. One specified the
first rule correctly but selected the “task name” attribute for
the second, and three selected “task name” for both rules
(e.g. “task name = lecture”, “task name = breakout”), which
would be a different way to model the expected behaviour.
Two users made invalid rules for detecting the entrance in
the teachers room, considering proximity detection of a user
or a device instead of a point of interest (the teachers room).
Such mistakes were probably due to low confidence with

the context model schema, and we believe that some short
annotation of the context entities and attributes can better
support novices in choosing the proper context aspect for
the rule trigger.

During the test, we observed the participants interacting
with the authoring tool and took note of the major issues
they experienced. The mistakes that often led to
malfunctioning rules confirmed the difficulties that some
participants mentioned in the open questions of the
questionnaire. For instance, at the first attempt, some
participants created rules that did not apply the desired
updates to the UI as expected or that did not work at all due
to one or more missing actions. The reason was that they
forgot to add the action to the rule and saved the rule with a
trigger but without actions, or used a wrong syntax in the
action (e.g., “font-size=10px” instead of “font-size:10px”).

Most errors occurred during the initial familiarization phase
the users had with the system, just before starting the real
test session. However, by considering these problems and
users’ recommendations, we assume to be able to make the
authoring tool easier to use also for novices and more robust
with little effort. To this end we will enhance the system
feedback at rule creation time, and add a syntax checker for
the actions.

DISCUSSION
By looking at the results of the user study reported above,
we are quite optimistic for future releases of our authoring
environment. Although several participants complaint about
missing functionalities and recommended some
improvements, it appears that all of them were able to
understand the main points of the approach. They indeed
understood the semantic of the adaptation/distribution rules
and were finally able to carry out the steps for their creation,
namely trigger and actions definition. It is worth
considering that 9 out of 12 participants declared not to have
previously used any authoring environment, even if all of
them had some skills on Web programming.

Other aspects that is worth to mention are expressivity and
simplicity of use of the tool. Regarding expressivity, we
assume that the authoring tool allows developers and
designers to manage a good range of modifications to the
user interface. Through the tool it is possible to define
actions that change the appearance of any element or its
contents or the navigation to different pages. The underlying
language for the adaptation rules allows them to declare
actions for any manipulation of the user interface
(creation/update/deletion of elements, also with the support
of conditionals and loops). We have however kept this first
version of the authoring tool simple to use avoiding the
possibility of creating particularly complex adaptation rules.
Given the user test results, we believe the tool has a good
tradeoff between expressivity and ease of use.

Designing Interactions MUM 2015

321

CONCLUSIONS
We have presented an authoring tool for supporting the
development of context-dependent user interfaces, which is
able to adapt and distribute themselves across multiple
devices based on contextual events.

The user study we have carried out to evaluate the first
version of the tool has shown the benefits of the trigger /
action paradigm for defining the context-dependent
adaptation and distribution rules. Participants found this
solution simple and quick, and the proposed approach, in
general, useful to address emerging scenarios characterized
by contexts of use with a wide availability of devices and
sensors.

We will dedicate future work to improving the authoring
tool based on users’ recommendations and adding further
features. We will start by improving usability of editing the
action part of the rules, e.g. by allowing multiple selection
of elements, adding a suggested list for the CSS properties
and syntax check for the updates. We will provide more
support to define rule templates for the domain expert level,
and carry out user tests for this part as well.

ACKNOWLEDGMENTS
We gratefully acknowledge support from the Street Smart
Retail project (grant n. 14607, European Institute of
Innovation and Technology) for partially supporting this
work.

REFERENCES
1. Brown, P.J. 1996. The Stick-e Document: a Framework

for Creating Context-aware Applications.
ElectronicPublishing, WILEY, Chichester, GB, vol. 8,
no. 2-3, 24 September 1996, pp. 259-272.

2. Chen, X.A., Grossman, T., Wigdor, D.J., and
Fitzmaurice, G. 2014. Duet: exploring joint interactions
on a smart phone and a smart watch. Proceedings of
CHI 2014, ACM, pp. 159-168.

3. Chi, P. and Li, Y. 2015. Weave: Scripting Cross-Device
Wearable Interaction. Proceedings of CHI 2015, ACM,
pp.3923-3932.

4. Dumas, B., Solórzano, M., and Signer, B. 2013. Design
guidelines for adaptive multimodal mobile input
solutions. Proceedings of MobileHCI 2013, ACM, pp.
285-294.

5. Frosini, L. and Paternò, F. 2014. User Interface
Distribution in Multi-Device and Multi-User
Environments with Dynamically Migrating Engines.
Proceedings of EICS 2014, ACM, pp. 55-64.

6. Ghiani, G., Manca, M., Paternò, F., and Porta, C. 2014.
Beyond Responsive Design: Context-Dependent
Multimodal Augmentation of Web Applications.
Proceedings of MobiWIS 2014, LNCS Volume 8640,
pp. 71-85, Springer Verlag.

7. Grubert, J., Heinisch, M., Quigley, A.J., and
Schmalstieg, D. 2015. MultiFi: Multi Fidelity

Interaction with Displays On and Around the Body.
Proceedings of CHI 2015, ACM, pp. 3933-3942.

8. Houben, S., and Marquardt, N. 2015. WatchConnect: A
Toolkit for Prototyping Smartwatch-Centric Cross-
Device Applications. Proceedings of CHI 2015, ACM,
pp. 1247-1256.

9. Lin, J. and Landay J. A. 2008. Employing patterns and
layers for early-stage design and prototyping of cross-
device user interfaces. In Proceedings of CHI 2008,
ACM, pp. 1313-1322.

10. Korpipää, P., Malm, E., Rantakokko, T., Kyllönen, V.,
Kela, J., Mäntyjärvi, J., Häkkilä, J., and Känsälä, I.
2006. Customizing User Interaction in Smart Phones.
IEEE Pervasive Computing 5(3): 82-90 (2006).

11. Marcotte, E. 2011. Responsive Web Design, A Book
Apart (2011),
http://www.abookapart.com/products/respon

sive-web-design

12. Marquardt, N., Diaz-Marino, R., Boring, S., and
Greenberg, S. 2011. The proximity toolkit: prototyping
proxemic interactions in ubiquitous computing
ecologies. In Proceedings of UIST 2011, ACM, pp.
315-326.

13. Maues, R.A. and Barbosa, S.D.J. 2013. Keep doing
what I just did: automating smartphones by
demonstration. In Proceedings of MobileHCI 2013,
ACM, pp. 295–303.

14. Meskens, J., Luyten, K., and Coninx, K. 2010. Jelly: a
multi-device design environment for managing
consistency across devices. In Proceedings of AVI
2010, ACM, pp. 289-296.

15. Nebeling, M., Mintsi, T., Husmann, M., Norrie, M. C.
2014. Interactive development of cross-device user
interfaces. In Proceedings of CHI 2014, ACM, pp.
2793-2802.

16. Realinho, V., Romão, T., and Dias, A. E. 2012. An
event-driven workflow framework to develop context-
aware mobile applications. In Proceedings of the 11th
International Conference on Mobile and Ubiquitous
Multimedia (MUM '12), article 12, ACM Press, 2012.

17. Salber, D., Anind, D., and Abowd, G. 1999. The
context toolkit: Aiding the development of context-
enabled applications. In: Proceedings of CHI 1999,
ACM, pp. 434–441.

18. Ur, B., McManus, E., Ho, M.P.Y., and Littman, M.L.
2014. Practical trigger-action programming in the smart
home. In Proceedings of CHI 2014, ACM, pp. 803–
812.

19. Yang, J. and Wigdor, D. 2014. Panelrama: enabling
easy specification of cross-device web applications. In
Proceedings of CHI 2014, ACM, pp. 2783-2792

MUM 2015 Designing Interactions

322

http://www.abookapart.com/products/responsive-web-design
http://www.abookapart.com/products/responsive-web-design

